Science Course

0000

Course format (preliminary)

Carlo Anti

0000

Modules

Lessons

Chapters

Methods in Science:

scientific reasoning

Modelling and data fitting Measures and uncertainties Introduction **Reflecting mirrors Gigaro Reproduction** The mole concept

Optics through experiments

Refraction, Imaging, lenses

Diffraction Interference

Seismo box

Water in sands

Earthquake

Energy in Science

Mechanics

Batteries

Food

Photosynthesis Photovoltaic cells

Course Description

Quantitative characterization of everyday life phenomena realize experimental activities related to daylife materials and instrumentations scientifically approach to understanding daylife phenomena

Index of modules

Module Title	Topics	Contents
Methods in Science		 Deductive scientific rea Measuring and uncertai Modelling and data fitting
Optics (Traveling labs)		Reflection law Refraction law Imaging and lenses Diffraction Interference
Seismo box		Water in sands: Capillarity and adho Earthquake: Resonances Energy storage and
Energy in Science		o Mechanics o Battery o Food o Photosynthesis o Photovoltaic cell

Summary

Rights

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CONFINDUSTRIA

Methods In Science

Description

The scientific method is the way to understand the physical origin of a phenomenon. Understanding is different from believe or simply known, Understanding means we know about the causes of a phenomenon, we can make previsions and estimate the risk of failure. In this module the Scientific method is presented as a deductive process proceeding by means of observation, hypothesis and verification in a continuously cycle with which science continually tests its laws, revises a theory, reviews his results.

Objectives

- · Making hypothesis as the creative issue of the Scientific Method
- · Use Measurement Uncertainty to distinguish experimental values, verify/falsify hypothesis
- · Data modeling and physical laws: fitting and regression

Prerequisites

o Usage of electronic spreadsheets (Excel, Calc)

	Summary
Authors	Carlo Meneghini
	(carlo.meneghini@uniroma3.it)
	Monica Bionducci (m.bionducci@gmail.com)
Topics	Methods
Description	The scientific method at work through
	Observation, hypothesis and verification
Publisher	SMART project
Contributors	
Type	Experimental (daylife)
Language	English
Coverage	(primary) secondary school science teachers
Rights	© 000 E
	This work is licensed under a Creative
	Commons Attribution-NonCommercial-
	ShareAlike 4.0 International License

